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Abstract Imbalanced data is a common problem in classification. This phenomenon is
growing in importance since it appears in most real domains. It has special relevance to
highly imbalanced data-sets (when the ratio between classes is high). Many techniques have
been developed to tackle the problem of imbalanced training sets in supervised learning. Such
techniques have been divided into two large groups: those at the algorithm level and those at
the data level. Data level groups that have been emphasized are those that try to balance the
training sets by reducing the larger class through the elimination of samples or increasing
the smaller one by constructing new samples, known as undersampling and oversampling,
respectively. This paper proposes a new hybrid method for preprocessing imbalanced data-
sets through the construction of new samples, using the Synthetic Minority Oversampling
Technique together with the application of an editing technique based on the Rough Set
Theory and the lower approximation of a subset. The proposed method has been validated
by an experimental study showing good results using C4.5 as the learning algorithm.
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1 Introduction

The imbalanced data-set problem in classification domains occurs when the number of
instances that represent one class is much larger than the other classes. The minority class
is usually more interesting from the point of view of the learning task [9]. There are many
situations in which imbalance occurs between classes, such as satellite image classification
[38], risk management [26], medical applications [29], and so on. As a result, this problem
has been identified as a current challenge in Data Mining [48].

Classification algorithms often achieve high accuracy with the majority class whereas with
the minority class, quite the opposite occurs. In imbalanced training sets, original knowledge
often focuses on the minority class, whereas many classifiers consider the less frequent data
to be rarities or noise, focusing exclusively on the results of the global measures [23,31,37].

Many techniques for dealing with class imbalance have arisen as a result of research and
are grouped into two categories [9]: those at the level of the learning algorithm and those that
modify data distribution (data level).

The great advantage of the data level approaches is that they are more versatile, since their
use is independent of the classifier selected. Furthermore, we may preprocess all data-sets in
order to use them to train different classifiers. In this manner, the computation time needed to
prepare the data is only required once. In this paper, we consider the use of a well-known and
widely used technique to balance the training set before the learning phase, the “Synthetic
Minority Oversampling Technique” (SMOTE) methodology [8].

In this paper, we tackle the data level making the two following assumptions:

– It has special relevance to highly imbalanced data-sets, when the imbalance ratio (defined
as the fraction between the number of instances of the majority class and the minority
class) is high (higher than or equal to 9, so the minority class represents less than 10%).

– SMOTE can introduce examples of the minority class in the area of the majority class. This
phenomenon is known as overgeneralization. In order to solve this problem, some clean-
ing (multi-edit) methods have been used in order to eliminate such examples, improving
the SMOTE results, such as ENN and TomekLinks [4], Borderline [22], or Safe level [7].

This work introduces a new hybrid proposal for carrying out oversampling via SMOTE and
undersampling over the synthetic instances for highly imbalanced data-sets, called SMOTE-
RSB∗, and it is based on two steps:

– building new synthetic examples of the minority class using SMOTE and
– improving the quality of these new samples through editing techniques based on the

Rough Set Theory (RST) and the lower approximation of a subset, acting over the artifi-
cial instances of the minority class created by the SMOTE algorithm.

Our main contribution is to introduce a new preprocessing method using SMOTE to
generate synthetic examples and RST as a cleaning method. We propose the elimination of
any synthetic example that does not belong to the lower approximation of the minority class,
considering these examples in the boundary region as noisy and not useful for classification.
We carried out experiments in order to show the goodness of this model in comparison with
SMOTE, SMOTE-ENN, SMOTE-TomekLinks, Borderline-SMOTE1, Borderline-SMOTE2
and Safe-Level-SMOTE, using 44 data-sets from the UCI repository [3] with high imbalance
ratios. The measure of performance is based on AUC [25], and the significance of the results
is supported by the proper statistical analysis as suggested in the literature [12,16].

In order to do this, the paper is organized as follows. In Sect. 2, Related work, we introduce
the imbalanced data-set problem, discuss the evaluation metric used in this work, describe

123



SMOTE-RSB∗: a hybrid preprocessing approach using SMOTE and RST

some preprocessing techniques for imbalanced data-sets, and introduce the RST. In Sect. 3
we present the algorithm called SMOTE-RSB∗. In Sect. 4 we introduce the experimental
study, that is, the benchmark data-sets, the statistical tests for performance comparison and
the experimental analysis in order to validate the goodness of our proposal. In Sect. 5 we
draw some conclusions about the completed study.

2 Related work

This problem is closely related to the cost-sensitive classification problem [28,36,49]. The
classical machine learning algorithms may be biased toward the majority class and, as a result,
may predict the minority class examples poorly. This problem is growing in importance and
has been identified as one of the 10 main challenges of Data Mining [48].

We focus our study on imbalanced data-sets with binary classes, that is, there is only one
positive and one negative class, considering the former to be the one with the lower number
of examples and the latter the one with the higher number of examples. This scenario can
be viewed as a set of examples and counterexamples for a given concept to be learnt, which
is the most common case in the specialized literature for imbalanced classification. When
multiple classes are present, the binary-class approach may be directly applicable via pairwise
coupling techniques [15]. Specifically, in a previous work by [14], the authors carried out an
experimental analysis in which it is shown that this methodology allows the achievement of
a good behavior for preprocessing in multiclass imbalanced data-sets.

As we have mentioned, the imbalanced data-set problem can be tackled using two main
types of solutions:

1. Solutions at the data level [4,8,10,17]: this kind of solution consists of balancing
the class distribution by oversampling the minority class (positive instances) or under-
sampling the majority class (negative instances) or by applying hybrid models which
combine the previous techniques.

2. Solutions at the algorithmic level: in this case we need to adapt our method to deal
directly with the imbalance between the classes, for example, modifying the cost per
class [21] or adjusting the probability estimation in the leaves of a decision tree to favor
the positive class [44].

In published research works, it has been shown that applying a preprocessing step in order
to balance the class distribution is a positive solution to the problem of imbalanced data-sets
[4,13]. Furthermore, the main advantage of these techniques is that they are independent of
the classifier used. In [41] a system is presented that combines these two general solutions
(data and algorithm level) obtaining good results.

In this work, we evaluate different instance selection methods together with oversampling
and hybrid techniques to adjust the class distribution in the training data. Specifically we
have chosen the methods that have been studied in [4]. These methods are classified into
three groups:

– Undersampling methods that create a subset of the original data-set by eliminating some
of the examples of the majority class.

– Oversampling methods that create a superset of the original data-set by replicating some
of the examples of the minority class or creating new ones from the original minority
class instances.

– Hybrid methods that combine the two previous methods, eliminating some of the minor-
ity class examples expanded by the oversampling method in order to eliminate overfitting.
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In the remainder of this section, we will describe the methods used in this paper for the
experimental study.

– Undersampling methods

• “Tomek links” [39] can be defined as follows: given two examples ei and e j belong-
ing to different classes, with d(ei , e j ) the distance between ei and e j . A (ei ,e j ) pair
is called a Tomek link if there is no example El , so that d(ei , el) < d(ei , e j ) or
d(e j , el) < d(ei , e j ). If two examples form a Tomek link, then either one of these
examples is noise or both examples are borderline. Tomek links can be used as an
undersampling method or as a data cleaning method. As an undersampling method,
only examples belonging to the majority class are eliminated, and as a data cleaning
method, examples of both classes are removed.

• “Neighborhood Cleaning Rule” (NCL) uses the Wilson’s Edited Nearest Neighbor
Rule (ENN) [45] to remove majority class examples. ENN removes any example
whose class label differs from the class of at least two of its three nearest neighbors.
NCL modifies the ENN in order to increase the data cleaning. For a two-class prob-
lem, the algorithm can be described in the following way: for each example ei in
the training set, its three nearest neighbors are found. If ei belongs to the majority
class and the classification given by its three nearest neighbors contradict the original
class of ei , then ei is removed. If ei belongs to the minority class and its three nearest
neighbors misclassify ei , then the nearest neighbors that belong to the majority class
are removed.

– Oversampling methods

• “Synthetic Minority Oversampling Technique” (SMOTE) [8] is an oversampling
method. Its main idea is to form new minority class examples by interpolating between
several minority class examples that lie together. Thus, the overfitting problem is
avoided and the decision boundaries for the minority class spread further into the
majority class space. This method is described in detail in the next part of this section.

– Hybrid methods: Oversampling plus Undersampling

• “SMOTE—Tomek links”. Frequently, class clusters are not well defined as some
majority class examples might invade the minority class space. The opposite can also
be true, since interpolating minority class examples can expand the minority class clus-
ters, introducing artificial minority class examples too deeply into the majority class
space. Inducing a classifier in such a circumstances can lead to overfitting. In order to
create better-defined class clusters, Batista et al. [4] proposed applying Tomek links
to the oversampled training set as a data cleaning method. Thus, instead of removing
only the majority class examples that form Tomek links, examples from both classes
are removed.

• “SMOTE—ENN”. The motivation behind this method is similar to SMOTE—Tomek
links [4]. ENN tends to remove more examples than the Tomek links do, so it is
expected to provide a more in depth data cleaning. In contrast to NCL, which is an
undersampling method, ENN is used to remove examples from both classes. Thus,
any example that is misclassified by its three nearest neighbors is removed from the
training set.

• “Borderline-SMOTE1”. This method only oversamples or strengthens the border-
line minority examples [22]. First, it finds out the borderline minority examples P;
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then, synthetic examples are generated from them and added to the original train-
ing set. This method can be described as follows: for every minority example (pi )
calculate its m nearest neighbors from the whole training set, if all the m nearest
neighbors are majority examples, pi is considered to be noise and is not operated in
the following step. If m/2 ≤ m′ < m , namely the number of pi ’s majority nearest
neighbors is larger than the number of its minority ones, pi is considered to be easily
misclassified and put into a set DANGER. If 0 ≤ m′ < m/2 , pi is safe and does not
need to participate in the follows steps. The examples in DANGER are the borderline
data of the minority class P . Finally, for each example in DANGER, we calculate its
k-nearest neighbors from P and operate in a similar way to SMOTE.

• “Borderline-SMOTE2”. This method is very similar to Borderline-SMOTE1; it not
only generates synthetic examples from each example in DANGER and its positive
nearest neighbors in P , but also does so for its nearest negative neighbor in N (majority
class) [22]. The difference between it and its nearest negative neighbor is multiplied
by a random number between 0 and 0.5; thus, the newly generated examples are closer
to the minority class.

• “Safe-Level-SMOTE”. This method assigns each positive instance its safe level
before generating synthetic instances [7]. Each synthetic instance is positioned closer
to the largest safe level so all synthetic instances are generated only in safe regions.

2.1 Evaluation in imbalanced domains

The performance of machine learning algorithms is typically evaluated using predictive accu-
racy. However, this is not appropriate when the data are imbalanced and/or when the costs
of different errors vary markedly [9].

Weiss and Hirsh [43] showed that the error rate of the classification of the rules of the
minority class is 2 or 3 times greater than the rules that identify the examples of the majority
class and that the examples of the minority class are less likely to be predicted than the
examples of the majority one. Because of this, instead of using the error rate (or accuracy),
in the context of imbalanced problems more appropriate metrics are considered.

A confusion matrix is a form of contingency table showing the differences between the
true and predicted classes for a set of labeled examples that introduces the well-known mea-
sures: true positive (TP), true negative (TN), false positive (FP), and false negative (FN).
Using these, we obtain the classical rates of accuracy and error as follows:

Error rate = FP + FN

TP + FP + TN + FN
(1)

Accuracy = TP + TN

TP + FP + TN + FN
= 1 − Error rate (2)

It is also possible to derive four performance metrics that directly measure the classification
performance of positive and negative classes independently:

– True positive rate TPrate = TP/(TP + FN) is the percentage of positive cases correctly
classified as belonging to the positive class.

– True negative rate TNrate = TN/(FP + TN) is the percentage of negative cases correctly
classified as belonging to the negative class.

– False positive rate FPrate = FP/(FP + TN) is the percentage of negative cases misclas-
sified as belonging to the positive class.

– False negative rate FNrate = FN/(TP + FN) is the percentage of positive cases misclas-
sified as belonging to the negative class.
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These four performance measures have the advantage of being independent of class costs
and prior probabilities. The aim of a classifier is to minimize the false positive and negative
rates or, similarly, to maximize the true negative and positive rates.

One appropriate metric that could be used to measure the performance of classification
over imbalanced data-sets is the Receiver Operating Characteristic (ROC) graphics [6]. In
these graphics, the tradeoff between the benefits (TPrate) and costs (FPrate) can be visualized,
and it acknowledges the fact that the capacity of any classifier cannot increase the number
of true positives without also increasing the false positives. The area under the ROC curve
(AUC) [25] corresponds to the probability of correctly identifying which of the two stimuli
is noise and which is signal plus noise. AUC provides a single-number summary for the
performance of learning algorithms.

The way to build the ROC space is to plot on a two-dimensional chart the true positive
rate (Y -axis) against the false positive rate (X -axis) as shown in Fig. 1. The points (0, 0)
and (1,1) are trivial classifiers in which the output class is always predicted as negative and
positive, respectively, while the point (0, 1) represents perfect classification. To compute the
AUC, we just need to obtain the area of the graphic as:

AUC = 1 + TPrate − FPrate

2
(3)

2.2 SMOTE: synthetic minority oversampling technique

The SMOTE algorithm [8] oversamples the minority class by taking each minority class
sample and introducing synthetic examples along the line segments joining any/all of the k
minority class nearest neighbors.

With this approach, the positive class is oversampled by taking each minority class sample
and introducing synthetic examples along the line segments joining any/all of the k minority
class nearest neighbors. Depending upon the amount of oversampling required, neighbors
from the k-nearest neighbors are randomly chosen. This process is illustrated in Fig. 2, where
xi is the selected point, xi1 to xi4 are some selected nearest neighbors and r1 to r4 the synthetic
data points created by the randomized interpolation.

Synthetic samples are generated in the following way: take the difference between the
feature vector (sample) under consideration and its nearest neighbor. Multiply this difference
by a random number between 0 and 1, and add it to the feature vector under consideration.
This causes the selection of a random point along the line segment between two specific
features.

This algorithm is detailed in Fig. 3, which we describe below:

Fig. 1 The area under the ROC
curve
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Fig. 2 An illustration of how to
create the synthetic data points in
the SMOTE algorithm

Fig. 3 SMOTE Algorithm pseudo-code

1. “Step 1” selects the number of minority class samples to be used for generating new
instances when the degree of oversampling is lower than the 100%.

2. “Step 2” is aimed to computed all the k-neighbors for each sample to be replicated.
3. Finally, “Step 3” computes the interpolation as explained above. For the sake of clarity,

an example of this usage is shown in Fig. 4.

In contrast to the common replication techniques (for example random oversampling),
in which the decision region usually become more specific, with SMOTE the overfitting
problem is somehow avoided by causing the decision boundaries for the minority class to be
larger and to spread further into the majority class space, since it provides related minority
class samples to learn from.

Finally, we must point out that the implementation of SMOTE used in this work has been
taken from the open source KEEL project 1 [1,2].

1 http://www.keel.es.
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Fig. 4 Example of the SMOTE application

2.3 Rough set theory

Rough sets were presented in a paper published in 1982 [32]. Today, the RST has evolved into
a methodology for dealing with different types of problems, such as uncertainty produced
by inconsistencies in data [5].

RST is a good tool to model uncertainty when it appears as inconsistency. It is possible to
manage quantitative as well as qualitative data, and it is unnecessary to eliminate inconsis-
tencies prior to the analysis. The RST can be used with output information to determine the
relevance of the attributes, generate relationships between them (in terms of rules), and so
on. RST has allowed the development of methods for solving problems based on Information
Systems such as classification, decision making, knowledge discovery [5,11,30,40,42,47].

The novelty of the RST is in the lower and upper approximations of a subset X ⊆ U .
These concepts were originally introduced in reference to an indiscernibility relation R.

This classical approach of the RST is extended by accepting that objects that are not
indiscernible but sufficiently close or similar can be grouped into the same class [20,35]. The
aim is to construct a similarity relation R

′
from the indiscernibility relation R by relaxing the

original conditions for indiscernibility. This relaxation can be performed in many ways, thus
giving many possible definitions of similarity. Several functions of comparison of attributes
exist (similarity functions), which are associated with the type of attribute that is compared.
However, this similarity relation R

′
must satisfy some minimal requirements:

– R being an indiscernibility relation (equivalence relation) defined on U, R
′

is a similar-
ity relation extending R if ∀x ∈ U, R (x) ⊆ R

′
(x)and ∀x ∈ U, ∀y ∈ R

′
(x) , R (y) ⊆

R
′
(x), where R

′
(x)is a similarity class of x , ie. R

′
(x) = {y ∈ U : y R

′
x}.

The approximation of the set X ⊂ U , using the inseparability relation R, has been induced
as a pair of sets called R− lower approximation of X and R−upper approximation of X . The
lower approximation B∗(X) and upper approximation B∗(X) of X are defined respectively
as shown in Eqs. 4 and 5.

B∗(X) = {x ∈ X : R
′
(x) ⊆ X} (4)

B∗(X) =
⋃

x∈X

R
′
(x) (5)

Taking into account the equations defined in 4 and 5, the boundary region of X is defined
for the relation R

′
as:

B NB(X) = B∗(X) − B∗(X) (6)

If the set B NB is empty, then the X set is exact with respect to the relation R
′
. If, by

contrast, B NB(X) 	= θ , the X set is inexact or approximated with respect to R
′
.
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The use of similarity relations offers greater possibilities for the construction of approxi-
mations.

Within RST, the meaning of the lower approximation of a decision system is of great
interest for the revision of training sets. It allows us to analyze the consistencies associated
with the different classes in a classification problem. The lower approximation consists of
the objects that with absolute certainty belong to one class or another, guaranteeing that these
instances are free of noise.

This idea is used for designing the hybrid preprocessing method that we present in the
following section. We will use RST for clearing the synthetic instances created by SMOTE,
avoiding noise and inconsistencies.

3 SMOTE-RSB∗: a preprocessing method combining SMOTE and RST

In this section, we present a new proposal for making the distribution between classes in
imbalanced training sets uniform. The hybrid method has two stages:

1. first, we create new instances using the SMOTE algorithm.
2. second, a cleaning method based on RST is applied to include the original examples and

the synthetic minority examples that belong to the lower approximation (B∗) of their
class in the final training set (called resultset in the algorithm).

The algorithm uses the extended approach of RST based on similarity relations and
includes five steps that we detail below:

1. “Step 1” uses SMOTE for oversampling the original data-set and it matches with the
first stage.

2. “Step 2” just builds the final set of instances (output of the algorithm) by including
initially the original ones of the data-set.

3. “Step 3” constructs a similarity matrix for all instances of the original data-set. The
function used to determine the degree of similarity between two instances xi and x j is
defined as follows (assigning its value to the similari t yMatri x):

similari t yMatri x(i, j) =

n∑
k=1

wk ∗ δk(xik, x jk)

M
(7)

where n is the number of features, wk the weight for feature k, xik and x jk are the values
for feature k, respectively, δk is the function of comparison for feature k, M is the number
of features considered in the equivalence relation, B is the features set considered in the
equivalence relation.
The weight of a feature is defined as:

wk =
{

1 if k ∈ B
0 other case

(8)

δk is calculated for discrete attributes in the following way:

δk(xik, x jk) =
{

1 if xik = x jk

0 other case
(9)

and for continuous attributes:

δk(xik, x jk) = 1 −
∣∣∣xik − x jk

∣∣∣
max Ak − min Ak

(10)
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where max Ak and min Ak are the extremes of the domain intervals for feature k.
4. “Step 4” analyzes which new synthetic data belong to the lower approximation, that

is, their similarity value is lower than a given threshold, which means that there are no
similar elements in the set, and they are added to the final “result set”.

5. Finally, “Step 5”, checks whether all new generated instances are similar among them
and returns the final “result set” as the output of the SMOTE algorithm.

Figure 5 shows the algorithm associated with the steps that are previously indicated. As we
have point out previously, result Set is the output set of the algorithm, containing the original
instances, and the final synthetic instances of the training data-set and syntheticI nstance
is a vector containing the new instances generated by the SMOTE algorithm. This method is
included within the KEEL software tool [1,2], so that any interested researcher can reproduce
the experimental study.

We must pay special attention to the similari t yV alue parameter, since it is the value used
to determine the similarity of the instances for obtaining the lower and upper approximation.
It will be analyzed in the experimental study in a section devoted to this parameter study.

With this algorithm, it is possible to obtain a training data-set eliminating inconsistencies
from the synthetic examples. In the final training set, it inserts those synthetic instances,
belonging to the lower approximation (B∗), that do not have similarities in the majority class.
There are some exceptions for problems where all synthetic examples have similarities with
negative instances. This justifies the inclusion of Step 5, due to the fact that SMOTE usually
provides better behavior in the learning algorithm than the use of the original data-set without
synthetic instances.

Fig. 5 Algorithm SMOTE-RSB∗

123



SMOTE-RSB∗: a hybrid preprocessing approach using SMOTE and RST

4 Experimental study

In this section, we first present the experimental framework, including the benchmark data-
sets, the parameters, and the statistical tests used in order to carry out the performance
comparison. Then, we introduce the experimental analysis, which is divided into two parts:
first we carry out an analysis of the parameters for our model, then we develop the comparative
analysis with some preprocessing techniques.

4.1 Experimental setup: data-sets, parameters, and statistical tests

In this section, we briefly describe the data-sets used for the experimental study and the
statistical tests used alongside the experimental study. The learning algorithm used for the
experimental study is C4.5 [33], which has been identified as one of the 10 top algorithms
in Data Mining [46] and has been widely used in imbalanced problems [4].

4.1.1 Data-sets and parameters

To analyze our proposal, we have considered 44 data-sets from the UCI repository [3] with
highly imbalanced rates (higher than 9). Multiclass data-sets were modified to obtain two-
class non-balanced problems, so that the union of one or more classes of the minority class
and the union of one or more of the remaining classes was labeled as the majority class. The
description of these data-sets appears in Table 1 (column I R indicates the imbalance ratio).

The sets were divided in order to perform a fivefolds cross-validation, 80% for training
and 20% for testing, where the 5 test data-sets form the whole set. For each data-set, we
consider the average results of the five partitions. Partition was carried out in such a way
that the quantity of elements in each class remained uniform [13]. They are available at the
Website KEEL-dataset [1,2] at the link: http://www.keel.es/datasets.php.

For our experiments, we consider the following parameters for the SMOTE-RSB∗
algorithm:

– k: Number of nearest neighbors that is fixed to 5.
– Distance function to obtain the nearest neighbors, the Euclidean distance is used.
– The class distribution will be rebalanced to 50–50%.

We must point out that these parameter values are those recommended by the authors of
the SMOTE algorithm [8], and therefore we have used them as a standard for our experimen-
tation.

4.1.2 Statistical tests

In this paper, we use the hypothesis testing techniques to provide statistical support to the
analysis of the results [18,34]. Specifically, we will use non-parametric tests, due to the fact
that the initial conditions that guarantee the reliability of the parametric tests may not be
satisfied, causing the statistical analysis to lose credibility with these types of tests [12].

For multiple comparisons, we use the Iman-Davenport test [27] to detect statistical dif-
ferences among a group of results and the Holm post hoc test [24] in order to find which
algorithms reject the hypothesis of equality with respect to a selected control method.

The post hoc procedure allows us to know whether a hypothesis of comparison of means
could be rejected at a specified level of significance α. However, it is very interesting to
compute the p-value associated with each comparison, which represents the lowest level of
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Table 1 Description of the data-sets used in the experiments

Data-set # Ex #Attributes %Class( min., maj.) IR

ecoli0137vs26 281 7 (2.49, 97.51) 39.15

shuttle0vs4 1829 9 (6.72, 93.28) 13.87

yeastB1vs7 459 7 (6.53, 93.47) 14.3

shuttle2vs4 129 9 (4.65, 95.35) 20.5

glass016vs2 192 9 (8.85, 91.15) 10.29

glass016vs5 184 9 (4.89, 95.11) 19.44

pageblocks13vs4 472 10 (5.93, 94.07) 15.85

yeast05679vs4 528 8 (9.66, 90.34) 9.35

yeast1289vs7 947 8 (3.16, 96.84) 30.5

yeast1458vs7 693 8 (4.33, 95.67) 22.10

yeast2vs4 514 8 (9.92, 90.08) 9.08

Ecoli4 336 7 (6.74, 93.26) 13.84

Yeast4 1484 8 (3.43, 96.57) 28.41

Vowel0 988 13 (9.01, 90.99) 10.10

Yeast2vs8 482 8 (4.15, 95.85) 23.10

Glass4 214 9 (6.07, 93.93) 15.47

Glass5 214 9 (4.20, 95.80) 22.81

Glass2 214 9 (7.94, 92.06 ) 11.59

Yeast5 1484 8 (2.96, 97.04) 32.78

Yeast6 1484 8 (2.49, 97.51) 39.16

abalone19 4174 8 (0.77, 99.23) 128.87

abalone918 731 8 (5.65, 94.25) 16.68

cleveland0vs4 177 13 (7.34, 92.66) 12.61

ecoli01vs235 244 7 (2.86, 97.14) 9.16

ecoli01vs5 240 7 (2.91, 97.09) 11

ecoli0146vs5 280 7 (2.5, 97.5) 13

ecoli0147vs2356 336 7 (2.08, 97.92) 10.58

ecoli0147vs56 332 7 (2.1, 97.9) 12.28

ecoli0234vs5 202 7 (3.46, 96.54) 9.1

ecoli0267vs35 224 7 (3.12, 96.88) 9.18

ecoli034vs5 300 7 (2.33, 97.67) 9

ecoli0346vs5 205 7 (3.41, 96.59) 9.25

ecoli0347vs56 257 7 (2.72, 97.28) 9.28

ecoli046vs5 203 7 (3.44, 96.56) 9.15

ecoli067vs35 222 7 (3.15, 96.85) 9.09

ecoli067vs5 220 7 (3.18, 96.82) 10

glass0146vs2 205 9 (4.39, 95.61) 11.05

glass015vs2 172 9 (5.23, 94.77) 9.11

glass04vs5 92 9 (9.78, 90.22) 9.22

glass06vs5 108 9 (8.33, 91.67) 11
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Table 1 continued

Data-set # Ex #Attributes %Class( min., maj.) IR

led7digit02456789vs1 443 7 (1.58, 98.42) 10.97

yeast0359vs78 506 8 (9.8, 90.2) 9.12

yeast0256vs3789 1004 8 (9.86, 90.14) 9.14

yeast02579vs368 1004 8 (9.86, 90.13) 9.14

significance of a hypothesis that results in a rejection. In this manner, we can know whether
two algorithms are significantly different and how different they are.

Furthermore, we consider the average ranking of the algorithms in order to show graphi-
cally how good a method is with respect to its partners. This ranking is obtained by assigning
a position to each algorithm depending on its performance for each data-set. The algorithm
that achieves the best accuracy on a specific data-set will have the first ranking (value 1);
then, the algorithm with the second best accuracy is assigned rank 2, and so forth. This task
is carried out for all data-sets and finally an average ranking is computed as the mean value
of all rankings.

These tests are suggested in the studies presented in [12,16,18,19], where its use in the
field of machine learning is highly recommended. Any interested reader can find additional
information on the Website http://sci2s.ugr.es/sicidm/, together with the software for apply-
ing the statistical tests.

4.2 SMOTE-RSB∗: parameter analysis

As previously introduced in Sect. 3, the similari t yvalue was fixed during the algorithm run-
time. The algorithm started with 0.4 value; if the cleaning method does not find any instance
in the lower approximation, the value is increased by 0.05 while the value remains lower than
or equal to 0.9. This is a way to ensure the lowest similarity value but high enough to populate
the lower approximation, obtaining good quality objects in the lower approximation.

Figure 6 shows the maximum similarity value for which each data-set gets balanced; each
number in the x-axis represents a different data-set, whereas the y-axis shows the similar-
ity values. As it can be observed, most of the data-sets are completely balanced when the
similarity value is around 0.8, specifically those with a high imbalance ratio.

4.3 Comparative analysis

In this section, we will compare SMOTE-RSB∗ with another six well-known preprocess-
ing mechanisms based on SMOTE, that is, the SMOTE algorithm itself and four hybrid

Fig. 6 Similarity value per data-set
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Table 2 Comparison of the AUC results for 6 preprocessing algorithms for test

Data-set Original Smote S-TL S-ENN Border1 Border2 Safelevel S-RSB∗

ecoli0137vs26 0.7481 0.8136 0.8136 0.8209 0.8445 0.8445 0.8118 0.8445

shuttle0vs4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9988 1.0000

yeastB1vs7 0.6275 0.7003 0.7371 0.7277 0.6422 0.6407 0.6621 0.8617

shuttle2vs4 1.0000 0.9917 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

glass016vs2 0.5938 0.6062 0.6388 0.6390 0.5738 0.5212 0.6338 0.6376

glass016vs5 0.8943 0.8129 0.8629 0.8743 0.8386 0.8300 0.8429 0.8800

pageblocks13vs4 0.9978 0.9955 0.9910 0.9888 0.9978 0.9944 0.9831 0.9978

yeast05679vs4 0.6802 0.7602 0.7802 0.7569 0.7473 0.7331 0.7825 0.7719

yeast1289vs7 0.6156 0.6832 0.6332 0.7037 0.6058 0.5473 0.5603 0.7487

yeast1458vs7 0.5000 0.5367 0.5563 0.5201 0.4955 0.4910 0.5891 0.6183

yeast2vs4 0.8307 0.8588 0.9042 0.9153 0.8635 0.8576 0.8647 0.9681

Ecoli4 0.8437 0.8310 0.8544 0.9044 0.8358 0.8155 0.8386 0.8544

Yeast4 0.6135 0.7004 0.7307 0.7257 0.7124 0.6882 0.7945 0.7609

Vowel0 0.9706 0.9494 0.9444 0.9455 0.9278 0.9766 0.9566 0.9678

Yeast2vs8 0.5250 0.8066 0.8045 0.8197 0.6827 0.6968 0.8112 0.7370

Glass4 0.7542 0.8508 0.9150 0.8650 0.7900 0.8325 0.9020 0.8768

Glass5 0.8976 0.8829 0.8805 0.7756 0.8854 0.8402 0.8939 0.9232

Glass2 0.7194 0.5424 0.6269 0.7457 0.7092 0.5701 0.6979 0.7912

Yeast5 0.8833 0.9233 0.9427 0.9406 0.9118 0.9219 0.9542 0.9622

Yeast6 0.7115 0.8280 0.8287 0.8270 0.7928 0.7485 0.8163 0.8208

abalone19 0.5000 0.5202 0.5162 0.5166 0.5202 0.5202 0.5363 0.5244

abalone918 0.5983 0.6215 0.6675 0.7193 0.7216 0.6819 0.8112 0.6791

cleveland0vs4 0.6878 0.7908 0.8376 0.7605 0.7194 0.7255 0.8511 0.7620

ecoli01vs235 0.7136 0.8377 0.8495 0.8332 0.7377 0.7514 0.7550 0.7777

ecoli01vs5 0.8159 0.7977 0.8432 0.8250 0.8318 0.8295 0.8568 0.7818

ecoli0146vs5 0.7885 0.8981 0.8981 0.8981 0.7558 0.8058 0.8519 0.8231

ecoli0147vs2356 0.8051 0.8277 0.8195 0.8228 0.7465 0.8320 0.8149 0.8154

ecoli0147vs56 0.8318 0.8592 0.8424 0.8424 0.8420 0.8453 0.8197 0.8670

ecoli0234vs5 0.8307 0.8974 0.8920 0.8947 0.8613 0.8586 0.8700 0.9058

ecoli0267vs35 0.7752 0.8155 0.8604 0.8179 0.8352 0.8102 0.8380 0.8227

ecoli034vs5 0.8389 0.9000 0.9361 0.8806 0.8806 0.9028 0.8306 0.9417

ecoli0346vs5 0.8615 0.8980 0.8703 0.8980 0.8534 0.8838 0.8520 0.8649

ecoli0347vs56 0.7757 0.8568 0.8482 0.8546 0.8427 0.8449 0.7995 0.8984

ecoli046vs5 0.8168 0.8701 0.8674 0.8869 0.8615 0.8892 0.8923 0.9476

ecoli067vs35 0.8250 0.8500 0.8125 0.8125 0.8550 0.8750 0.7950 0.8525

ecoli067vs5 0.7675 0.8475 0.8425 0.8450 0.8875 0.8900 0.7975 0.8800

glass0146vs2 0.6616 0.7842 0.7454 0.7095 0.6565 0.6958 0.7465 0.7978

glass015vs2 0.5011 0.6772 0.7040 0.7957 0.5196 0.5817 0.7215 0.7065

glass04vs5 0.9941 0.9816 0.9754 0.9754 0.9941 1.0000 0.9261 0.9941

glass06vs5 0.9950 0.9147 0.9597 0.9647 0.9950 0.9000 0.9137 0.9650

led7digit02456789vs1 0.8788 0.8908 0.8822 0.8379 0.8908 0.8908 0.9023 0.9019

yeast0359vs78 0.5868 0.7047 0.7214 0.7024 0.6228 0.6438 0.7296 0.7400
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Table 2 continued

Data-set Original Smote S-TL S-ENN Border1 Border2 Safelevel S-RSB∗

yeast0256vs3789 0.6606 0.7951 0.7499 0.7817 0.7528 0.7644 0.7551 0.7857

yeast02579vs368 0.8432 0.9143 0.9007 0.9138 0.8810 0.8901 0.9003 0.9105

Mean 0.7673 0.8142 0.8247 0.8247 0.7937 0.7923 0.8173 0.8402

Table 3 Winner algorithm

Original Smote S-TL S-ENN Border1 Border2 Safelevel S-RSB∗ Total

Test 1/3 3/1 4/1 4/2 0/4 5/2 7/1 15/3 39/5 ties

Absolute winner/ties

approaches SMOTE-TomekLinks, SMOTE-ENN (they have been analyzed in [4], Border-
line-SMOTE1, Borderline-SMOTE2, and Safe-Level-SMOTE.

The results of the experimental study for the test partitions are shown in Table 2, where in
the first column we have included the result over the original data-sets, and the best method
is highlighted in bold for each data-set. We can observe the goodness of the SMOTE-RSB∗
approach since it obtains the highest performance value for all the methodologies that are
being compared. Additionally, the good results for SMOTE-TomekLinks and SMOTE-ENN
with respect to SMOTE emphasize the significance of the cleaning step in the oversampling
for achieving a superior behavior at the classification stage. Finally, all the preprocessing
approaches outperforms the results with the original data-sets as expected.

Table 3 shows the total number of times every compared algorithm obtains the highest
AUC value. There are two numbers per cell. The first number represents how many times
the algorithm is the absolute winner while the second one denotes how many times it shares
the highest AUC with other algorithms (ties). The last column sums up results in the two
numbers. The first one indicates how many times the highest AUC is achieved by a single
algorithm while the second one shows the total amount of data-sets where the highest AUC
is shared.

Table 4 shows the ranking of the algorithms on each data-set selected for this study and
for the original data-sets. The reader can observe that our proposal appears 18 times in first
place, 7 times in second position, 9 times in third position and only one time in the last three
positions.

In order to compare the results, we will use a multiple comparison test to find the best
preprocessing algorithm. In Table 5 we can observe that the best ranking is obtained by our
proposal, and the two last positions correspond to Borderline-Smote1 and Borderline-Smote2.

An Iman–Davenport test is carried out (employing F-distribution with 6 and 258 degrees
of freedom for Nds = 44) in order to find statistical differences among the algorithms, obtain-
ing a p-value near to zero. In this manner, Table 6 shows the results of the Holm procedure for
comparing our proposal with the remaining ones. The algorithms are ordered with respect to
the z-value obtained. Thus, by using the normal distribution, we can obtain the corresponding
p-value associated with each comparison and this can be compared with the associated α/i
in the same row of the table to show whether the associated hypothesis of equal behavior is
rejected in favor of the best ranking algorithm, as we can observe the test rejects all cases.
We can observe that our approach is statistically superior to all compared methods.
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Table 4 Performance ranking for test

Data-sets 1st 2nd 3rd 4th 5th 6th 7th 8th

ecoli0137vs26 S-RSBa∗ Border2a Border1a S-ENN S-TL Smote Safelevel Original

shuttle0vs4 S-RSB∗ Border2 Border1 S-ENN S-TL Smote Original Safelevel

yeastB1vs7 S-RSB∗ S-TL S-ENN Smote Safelevel Border1 Border2 Original

shuttle2vs4 S-RSBa∗ Safelevela Border2a Border1a S-ENNa S-TLa Originala Smote

glass016vs2 S-ENN S-TL S-RSB∗ Safelevel Smote Original Border1 Border2

glass016vs5 Original S-RSB∗ S-ENN S-TL Safelevel Border1 Border2 Smote

pageblocks13vs4 S-RSBa∗ Originala Border1a Smote Border2 S-TL S-ENN Safelevel

yeast05679vs4 Safelevel S-TL S-RSB∗ Smote S-ENN Border1 Border2 Original

yeast1289vs7 S-RSB∗ S-ENN Smote S-TL Original Border1 Safelevel Border2

yeast1458vs7 S-RSB∗ Safelevel S-TL Smote S-ENN Original Border1 Border2

yeast2vs4 S-RSB∗ S-ENN S-TL Safelevel Border1 Smote Border2 Original

Ecoli4 S-ENN S-RSB∗ S-TL Original Safelevel Border1 Smote Border2

Yeast4 Safelevel S-RSB∗ S-TL S-ENN Border1 Smote Border2 Original

Vowel0 Border2 Original S-RSB∗ Safelevel Smote S-ENN S-TL Border1

Yeast2vs8 S-ENN Safelevel Smote S-TL S-RSB∗ Border2 Border1 Original

Glass4 S-TL Safelevel S-RSB∗ S-ENN Smote Border2 Border1 Original

Glass5 S-RSB∗ Original Safelevel Border1 Smote S-TL Border2 S-ENN

Glass2 S-RSB∗ S-ENN Original Border1 Safelevel S-TL Border2 Smote

Yeast5 S-RSB∗ Safelevel S-TL S-ENN Smote Border2 Border1 Original

Yeast6 S-TL Smote S-ENN S-RSB∗ Safelevel Border1 Border2 Original

abalone19 Safelevel S-RSB∗ Border2 Border1 Smote S-ENN S-TL Original

abalone918 Safelevel Border1 S-ENN Border2 S-RSB∗ S-TL Smote Original

cleveland0vs4 Safelevel S-TL Smote S-RSB∗ S-ENN Border2 Border1 Original

ecoli01vs235 S-TL Smote S-ENN S-RSB∗ Safelevel Border2 Border1 Original

ecoli01vs5 Safelevel S-TL Border1 Border2 S-ENN Original Smote S-RSB∗
ecoli0146vs5 Smote S-ENN S-TL Safelevel S-RSB∗ Border2 Original Border1

ecoli0147vs2356 Border2 Smote S-ENN S-TL S-RSB∗ Safelevel Original Border1

ecoli0147vs56 S-RSB∗ Smote Border2 S-ENN S-TL Border1 Original Safelevel

ecoli0234vs5 S-RSB∗ Smote S-ENN S-TL Safelevel Border1 Border2 Original

ecoli0267vs35 S-TL Safelevel Border1 S-RSB∗ S-ENN Smote Border2 Original

ecoli034vs5 S-RSB∗ S-TL Border2 Smote Border1 S-ENN Original Safelevel

ecoli0346vs5 S-ENNa Smotea Border2 S-TL S-RSB∗ Original Border1 Safelevel

ecoli0347vs56 S-RSB∗ Smote S-ENN S-TL Border2 Border1 Safelevel Original

ecoli046vs5 S-RSB∗ Safelevel Border2 S-ENN Smote S-TL Border1 Original

ecoli067vs35 Border2 Border1 S-RSB∗ Smote Original S-ENN S-TL Safelevel

ecoli067vs5 Border2 Border1 S-RSB∗ Smote S-ENN S-TL Safelevel Original

glass0146vs2 S-RSB∗ Smote Safelevel S-TL S-ENN Border2 Original Border1

glass015vs2 S-ENN Safelevel S-RSB∗ S-TL Smote Border2 Border1 Original

glass04vs5 Border2 S-RSB∗ Border1 Original Smote S-ENN S-TL Safelevel

glass06vs5 Border1a Originala S-RSB∗ S-ENN S-TL Smote Safelevel Border2

led7digit02456789vs1 Safelevel S-RSB∗ Border2 Border1 Smote S-TL Original S-ENN

yeast0359vs78 S-RSB∗ Safelevel S-TL Smote S-ENN Border2 Border1 Original
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Table 4 continued

Data-sets 1st 2nd 3rd 4th 5th 6th 7th 8th

yeast0256vs3789 Smote S-RSB∗ S-ENN Border2 Safelevel Border1 S-TL Original

yeast02579vs368 Smote S-ENN S-RSB∗ S-TL Safelevel Border2 Border1 Original

aThe algorithms obtain the same result

Table 5 Rankings obtained
through Friedman’s test

Algorithm Ranking

S-RSB∗ 2.61364

S-ENN 3.92045

S-TL 3.96591

Smote 4.23864

Safelevel 4.34091

Boderline-SMOTE2 5.18182

Boderline-SMOTE1 5.36364

Table 6 Holm’s table for α = 0.05, S-RSB∗ is the control method

i Algorithm z = (R0 − Ri )/SE p Holm/Hochberg/Hommel Hypothesis

6 Borderline-SMOTE1 5.2658490926 1.395E-7 0.008333 Reject

5 Borderline-SMOTE2 4.9176937807 8.756E-7 0.01 Reject

4 Safelevel 3.3074754631 9.414E-4 0.0125 Reject

3 Smote 3.1116381002 0.001860 0.016667 Reject

2 S-TL 2.5894051323 0.009614 0.025 Reject

1 S-ENN 2.5023663043 0.012336 0.05 Reject

5 Concluding remarks

In this paper, we have presented a new proposal for editing training sets for highly imbalanced
data-sets. The proposal belongs to the set of techniques known as hybrid oversampling and
undersampling.

The novelty of this proposal is that the quality of the new synthetic instances is evaluated
using RST and the lower approximation of a set of instances (the minority class in this case).
This evaluation allows us to include only those artificial instances that are within the lower
approximation of the minority class.

From the results of our experimental analysis, we have observed the good average results
obtained by the SMOTE-RSB∗ technique for preprocessing within the framework of imbal-
anced data-sets.
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